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The objective of this work is an experimental study of laminar mixing in several 
kinds of two-dimensional cavity flows by means of material line and blob deformation 
in a new experimental system consisting of two sets of roller pairs connected by belts. 
The apparatus can be adjusted to produce a range of aspect ratios (0.067-lo), 
Reynolds numbers (0.1-loo), and various kinds of flow fields with one or two moving 
boundaries. Flow visualization is conducted by marking underneath the free surface 
of the flow with a tracer solution of low diffusivity and of approximately the same 
density and viscosity as the flowing fluid. The effects of the initial location of the 
material blob, relative motion of the two bands, and minor changes in the geometry 
of the flow region are investigated experimentally. 

The alternate periodic motion of two bands in a cavity flow is an example of a 
laminar flow which might lead to chaotic mixing. The governing parameter is the 
dimensionless frequency of oscillation of the walls f which, under the proper 
conditions, is able to produce horseshoe functions of various types. The deformation 
of blobs is central to the understanding of mixing and can be studied to identify 
horseshoe functions. It is found that the efficiency of mixing depends strongly on the 
value off and that there exists an optimal value off that produces the best mixing 
in a given time. 

1. Introduction 
The calculation of velocity fields and mixing in cavity flows (see figure l a )  has 

theoretical and practical importance. Most studies have focused on streamline 
visualization a t  high Reynolds numbers (Burggraf 1966; Pan & Acrivos 1967; 
Greenspan 1974; Nallasamy & Prasad 1977; Vahl Davis & Mallinson 1976; Winters 
& Cliffe 1979; Schreiber & Keller 1983a, b ;  Peyret & Taylor 1983). 

Studies of mixing in low-Reynolds-number flows are much more scarce in spite of 
its practical importance. The simplest cavity flow, i.e. Type I (figure la) ,  corresponds 
to the cross-section of one of the most common mixing devices in polymer processing : 
the single screw extruder (Middleman 1977). Bigg & Middleman (1974) have studied 
the mixing of two fluids with different viscosities in the standard cavity flow (figure 
la) by means of the Marker and Cell technique (MAC) (Harlow & Amsden 1970). 
Experiments were conducted on a box of fixed aspect ratio with a moving upper wall; 
only one initial mixing configuration (a horizontal interface at y = +H) was studied. 
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FIGURE 1.  Various kinds of cavity flows. (a) standard cavity flow or Type I cavity flow ; ( b )  one-side 
tilted cavity flow; (c) Type I1 cavity flow; (d )  Type I11 cavity flow; (e) alternate periodic cavity 
flow. 

Given the dimensions of the box (height 7.95 cm, width 15.2 cm, depth 7.6 cm) 
secondary flows should not be ruled out. Other mixing studies of Type I cavity flows 
are reviewed by Chella & Ottino (1985~) .  

The objective of the first part of this work is to present a new apparatus that allows 
one to create a greater variety of two-dimensional low-Reynolds-number cavity 
flows, including some novel ones, and that can generate complex mixing patterns. 
The visualization of streamlines is standard and the results of mixing studies purely 
qualitative. In the first part we focus on steady flows and in the second on periodic 
flows. The objective of the second part is to suggest the possibility of developing 
chaotic mixing in two-dimensional flows. 



2. Apparatus and experimental conditions 
The geometries studied are shown in figuri~ I .  -4 vt\rsiitilt~ apparat.us. based on ideas 

originating from G. I. Taylor's (1934) ' four-rollcr * sct -up. \\-as designed to generate 
the flows. The system consists of two sets of rollcr pairs drivcn independently by 
reversible motors, and two neoprene bands. The flow region is adjustable up to a 
maximum area of 5 x 5.5 in by means of slots accompanying all the rollers and 
suitable partition blocks in the apparatus. The depth of the tank is approximately 
one foot. The motor drive (manufactured by B & B Motor and Control Corporation) 
has a t HP motor supplied by a 115 V a.c. source. The connection of the motors to 
a SA-12 B & B motor control makes feasible reversible speeds of up to 173.0 r.p.m. 
If glycerine, which has a viscosity of 7.6 poise at  25 O C ,  is used as working fluid, 
Reynolds numbers between 0.1 to 100 can be produced (the neoprene bands limit 
the viscosity of the fluids that can be used). Replacing the partition blocks by 
rectangular acrylic sheets of various dimensions can result in converging or diverging 
flow or a combination of both. For our purposes the Reynolds number Re is defined 
as 

where p is the density and 7 viscosity of the fluid and H is the height of a cavity. 
For non-rectangular cavities (such as figure 1 b ) ,  H is the average of the two heights, 
i.e. $(HI + H , ) .  W is the width of a cavity; V' is a characteristic velocity of the moving 
boundaries, which is equal to :(I V, I + I V ,  I) if both walls are moving, where t and b 
refer to the top and bottom boundaries respectively. 

The Reynolds number used in our experiments is the highest compatible with two 
competing effects : two-dimensionality of the flow and minimum diffusional spread 
of the dye in a given time. On one hand it is desirable to have Re as low as possible 
to avoid secondary flows and inertial effects, but in order to avoid the significant 
diffusion of the dye normal to the striations during the time of the experiment in a 
given cavity, the Reynolds number should be as large as possible. An order- 
of-magnitude calculation gives a Reynolds number of order one. 

The photographic conditions for visualizing the flows of interest can be classified 
into two groups: (i) long-time exposure (approximately 90 s) of aluminum flakes to 
obtain streamlines of various flows,t and (ii) shot-by-shot recording of the defor- 
mation of a material line or a material blob. The former requires an extremely dark 
background, while the latter needs two sets of 600 W quartz lights shining from two 
sides of the tank. A Nikon FE2 coupled with a Nikkor microlens of 105 mm was used. 
A green filter enhanced the contrast between glycerine and red dye, which is made 
up of polymeric dye (by Warnerdenkinson Corporation) and food colorant (by SCM 
Corporation) premixed with glycerine. The value of the diffusion coefficient of the 
dye in glycerine is estimated to be cm2/s. Figure 2 illustrates the design of the 
flow region. 

The most important characteristic that we seek in this apparatus is the ability to 
produce two-dimensional flows. By using a transparent fluid, glycerine, and injecting 
tracer at different levels below the free surface, we were able to check for possible 
variations of the velocity with the depth. Although the use of a transparent fluid 
makes the photography considerably more difficult, it provides a good check on the 

t See the comments given by Savaa (1985) on the difficulties of using reflective flakes for 
flow-visualization studies. 
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Neoprene Plexiglas 
container belt 
/ Roller h 

FIGURE 2. Diagram of the apparatus. 

two-dimensionality of the flow. In  most experiments a blob of a tracer was injected 
approximately 2-5 mm below the surface. Any deviation from two-dimensionality 
is cumulative, and in the case of alternating motion of the bands the separation of 
points is nearly exponential. Thus, deviations from two-dimensionality are easy to 
detect. In our case, and under most experimental conditions, they were found to be 
negligible, although it is possible to detect traces of this effect in some photographs. 

Another point investigated was whether the elasticity of the bands was a 
significant effect during the experiments. Based on photographs of two sets of marks 
placed on the belt, the effect was found to be negligible. 

3. Streamlines 
Three types of streamlines were obtained; namely the standard cavity flow and 

two modifications. For the sake of convenience, the standard cavity flow is defined 
as Type I. A rectangular cavity with two sides moving in the same direction is 
referred to as Type I1 cavity flow, while a cavity with two sides moving in the 
opposite directions is called Type I11 (see figure 1). Figure 3(a)  shows that the 
streamlines are closed and centred a t  approximately (+W, $H) .  Figure 3 ( b )  shows the 
streamlines of Type I1 cavity flow. For the case of V, = 1.86 cm/s, and 
V,, = 1.86 cm/s, the vortices are near the upstreams of the moving boundaries. The 
streamlines of the Type I11 cavity flow are shown in Figure 3 (c). Here, the inner loops 
of streamlines are circular, while the outer ones are almost rectangular. The Reynolds 
numbers, as defined aaove, are 0.6, 1.4 and 1.0 respectively for these three examples. 

three configurations and corresponding Reynolds numbers 
were also obtained (see figure 4) by using a numerical scheme based on a finite-element 
method (Malone 1979). The agreement between the experimental results and the 
simulations is generally satisfactory. 

Streamlines of the r j  
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FIQURE 3. Streamlines of (a) Type I cavity flow, W = 11.0 cm, H = 6.5 cm, V ,  = 0.9 cm/s, 
Re = 0.6; ( b )  Type I1 cavity flow, W = 11.0 cm, H = 7.0 cm, V,  = 1.86 cm/s, V ,  = 1.86 cm/s, 
Re = 1.4; ( c )  Type I11 cavity flow, W = 11.0 cm, H = 6.5 cm, V ,  = 1.5 cm/s, V ,  = -1.6 cm/s, 
Re = 1.0. 
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FIQURE 4. Computer simulation of streamlines in (a) Type I cavity flow; (a) Type I1 cavity 
flow; (c) Type 111 cavity flow with I V,/ V ,  I = 0.9. 

4. Chaotic Mixing 

particle in a two-dimensional flow, 
Recently, Aref (1984) indicated that the equations describing the motion of a fluid 

Y, being the stream function, and (’) the material time derivative, are formally a 
Hamiltonian system with one degree of freedom if the system is autonomous, 
Y(x1,x2), and with two degrees of freedom if the system is not autonomous, 
Y(xl, x,, t ) .  The solution of (2) with the initial condition x = X(X = (xl, x 2 ) ,  X = (X2, 
X,)) is x = Ft Xand is called the$ow in the theory of chaotic systems and the motion 
in continuum mechanics. Based on the theory of Hamiltonian systems the following 
statements can be made (see for example Guckenheimer & Holmes 1983) : 
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If Y = Y(x,, x 2 ) ,  the flow is integrable which implies zero Liapunov exponents and 
no chaos. However, if !P = Y(x,, x2, t ) ,  the flow is likely to be non-integrable, which 
in turn implies the possibility of the flow being chaotic. If the flow is chaotic, the 
Liapunov exponents are positive and the stretching of material lines is exponential. 
(Note that non-integrability does not imply chaos, but non-integrability is a 
necessary condition for chaos). All integrable systems have poor efficiency, all chaotic 
systems have high efficiency (Chella & Ottino 1985a, b ) .  

In the context of the theory of Hamiltonian systems, the word chaotic might be 
interpreted in any one of the following three ways: (i) positive Liapunov exponents 
in a given region of the flow; (ii) presence of transverse homoclinic or heteroclinic 
points; (iii) presence of Smale horseshoe functions. An accessible review of this is 
given by Doherty & Ottino (1986). For a deeper coverage, see Guckenheimer & 
Holmes (1983). 

In our particular case, the easiest way to study chaos experimentally seems to be 
the detection of Smale horseshoe functions (Smale 1963, 1967). The Smale horseshoe 
functions involve the stretching and folding of a square onto itself. In the context 
of mixing in two-dimensional bounded flows the horseshoe function has a clear 
physical significance. However, the relationship with definitions (i) and (ii) as well 
as its mathematical implications are far from being obvious. For these matters the 
reader is referred to Moser (1973), and Guckenheimer & Holmes (1983). 

Aref (1984) examined a model flow, the blinking vortex system, which according 
to numerical computations, leads to chaotic mixing. His system, as shown in figure 
5 (a ) ,  consists of two alternating corotating vortices each switched instantly on and 
off for a time Ti. The cavity flows with alternating motion of the boundaries can 
produce a somewhat analogous situation. (Obviously it takes some time for the 
motion to set in, H2/(q/p), of the order of 5 x s. Nevertheless, in the experiments 
we wait for approximately 5 s between the motion of one band and the other to 
minimize the influence of transient effects.) As shown in figure 5 ( b ) ,  there is an elliptic 
fixed point at  roughly +H from the top. When the lower wall is moved, the point 
moves to a position +H from the bottom. They resemble the two vortices of Arefs 
system. By analogy with the blinking vortex system, the experiments are quantified 
by means of the ratio of the dimensionless time of action of the boundary to the 
dimensionless time of redistribution in the cavity. This ratio is called the dimensionless 
frequency of oscillation f and is defined as 

Ti V' 
W 
2 

f = T W  (3) 
-- 
8 H  

where (27/8)( W / H )  is the dimensionless redistribution time in a cavity (Shearer 
1973). The total time of the experiment is defined as T,,,; the total number of periods 
is T,,,/ZTi. 

5. Experimental results for chaotic mixing 
Two kinds of experiments are reported. The first is the deformation of material 

lines, the second the deformation of blobs (figures 6 and 7). Material lines provide 
information about mixing, and for the steady-state flows they can be readily 
compared with the streamlines of figures 3(a-c). In steady flows the material is 
trapped between streamlines and the material line slowly orients in a direction 
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(a) 

z 
FIGURE 5. Comparison of (a) Aref s (1984) blinking vortex and ( b )  the alternate periodic cavity. 

tangential to them. This implies decay of mixing efficiency and the stretching is very 
ineffective (Chella & Ottino 1985a). As shown in figure 6 ( d ) ,  the alternate periodic 
cavity flow, however, can result in much more effective and uniform dispersion of 
the material line. 

The deformation of blobs is central to the understanding of mixing and provides 
information about horseshoe functions. Results are very sensitive to the period of 
the motion. For the cases of Ti = 10, 20, and 30, s corresponding to dimensionless 
frequencies of recirculation of 0.3, 0.6 and 0.9 respectively, it is found that the 
efficiency of mixing strongly depends on the value off (see figure 7). As the half-period 
is further increased, surpassing the total time of the experiment (e.g. 300 s in figure 
7), the flow becomes a standard cavity flow, which is a very inefficient way of mixing. 
It is therefore concluded that there exists an optimal value off to achieve the best 
mixing in a given time. For this particular cavity the optimum seems to lie between 
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0.6 and 0.9. Figure 6(d) with f = 0.66 produced excellent mixing. Figure 8 (a), also 
with f = 0.66, again produced excellent mixing. 

The effect of boundary geometry was also studied. Keeping the value off constant 
(for examplef = 0.66 in figure 8), a small variation of boundary geometry - trapez- 
oidal cavity, figure 1 (b) - can produce a substantial change in the final result of 
mixing. Lower or higher values off seem to magnify this effect. 

The initial location of the material blob is also important and is analysed in figures 
9(a-c). It appears that the initial location of a material blob is crucial to the final 
state of mixing whenf is not close to the optimum. Examples are given in figures 8 (b) 
and 9(a) (f = 0.66). Both cases are compared at  the same times, which are 0 , 1 , 2  and 
5min respectively, and the final results at 5min do not vary very much. For a 
somewhat lower value off the effect of initial location on the deformation of the 
material blob seems to be more important (see figures 9b, c). An even lower value 
would magnify this effect. 

The investigation of horseshoe functions is given in figure 10 (for the mathematical 
aspects of horseshoe functions and their applications in mixing see Rising & Ottino 
1986). The existence of horseshoes in a given region of the flow can be checked and, 
in theory, proven by superimposing photographs of forward and backward 
transformations with the initial location of the blob. If the resultant construction 
produces a horseshoe function, i.e. if it satisfies Moser’s conditions (Moser 1973), then, 
according to our previous definition, the cavity flow displays chaotic behaviour in 
that region. Note that we are assuming that we have a periodic flow and are referring 
to the map from the initial conditions to the locations at t = 2T4 (complete period) 
and t = -2Ti as the forward and backward transformations respectively. This 
mapping is known as a ‘time one return map’ or Poincurk section of the flow (cf. e.g. 
Guckenheimer & Holmes 1983). From a practical viewpoint this implies that since 
the flow is periodic and forms a horseshoe, a very fine subdivision of the blob will 
occur in the region initially occupied by the blob. Obviously i t  is desirable that the 
flow forms several horseshoe functions, possibly interacting, in such a way that they 
influence a large portion of the mixing region. From the point of view of mixing it 
is also desirable that they be of low period (the period being the number of 
transformations needed to produce the horseshoe) since we want to achieve good 
mixing as quickly as possible, and since the domain of influence of a high-period 
horseshoe is usually small. 

There are several properties that must be verified to deduce the presence of a 
horseshoe function in a mixing system (Moser’s conditions, Moser 1973) : 

(i) A quadrilateral 8 and a period p must be found such that the intersection of 
the quadrilateral, its forward image, P ( S ) ,  and its inverse image, F-P(S), produce 
a picture such as figure 11 (a). The number of striations in each image is greater than 
or equal to two. The method for doing this is to choose a region of the flow likely 
to contain a horseshoe by finding a quadrilateral in the intersecting streamlines (for 
alternating flows, see figure 11 b), with hyperbolic points at opposing vertices (this 
structure is present during the onset behaviour for horseshoes in these flows). 

(ii) It must be verified that the forward striations are the images of the inverse 
striations, and that the top and bottom of each forward striation is an image of the 
top or bottom of an inverse striation after the flow moves for a period of the 
horseshoe. This usually involves careful examination of photographs taken at each 
full and half period. If video recording is available or if the flow is directly observed 
the experimenter may be able to verify this move easily, and choose the appropriate 
pictures to demonstrate that the condition is fulfilled. 
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( i i )  

( i i i )  

FIQURE 6 (a, b ) .  For caption see facing page. 

(iii) After running the flow through another period forward, the image of each 
forward striation must have a striation properly contained in each forward striation, 
and running the flow backward milst produce the same effect with respect to the 
inverse striations. Each of these must be of width strictly less than the striation 
containing it. 

(iv) In  a coordinate frame consistent with the boundaries of the quadrilateral (e.g. 
for the construction mentioned in (i) the coordinates are the intersecting streamlines, 
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(iii) 

FIGURE 6. Deformation of a material line in (a) Type I cavity flow, W = 10.5 cm, H = 6.5 cm, 
V,  = 1.65 cm/s, Re = 1 . 1  ; ( b )  Type I1 cavity flow, W = 10.5 cm, H = 6.5 cm, V, = 1.65 cm/s, 
V ,  = 2.0 cm/s, Re = 1.2; ( c )  Type I11 cavity flow, W = 10.5 cm, H = 6.5 cm, V,  = 1.65 cm/s, 
V ,  = -2.0 cm/s, Re = 1.2; and (d) alternate periodic cavity flow, W = 10.5 cm, H = 6.5 cm, 
V ,  = 1.65 cm/s, V ,  = -2.0 cm/s, f = 0.66; at ( i )  initial state, (ii) 60 s ,  (iii) 120 s, and (iv) 300 8. 

Tt,,/2T$ = 7.5. 
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(ii) 

(iii 

FIGURE 7 (a, b) .  For caption see facing page. 
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(ii) 

(iii) 

FIGURE 7. Deformation of a material blob for various f values. W = 10.5 cm, H = 7.0 cm, 
V,  = 1.59 cm/s, V ,  = - 1.59 cm/s, Re = 1.23. (a) T 10 s, f = 0.3, Tt0,/2T+ = 15; (b )  T+ = 20 s, 
f = 0.6, Ttot/2Td = 7.5; (c) Ti = 30 s,f = 0.9, TtOt/2441 5; and (d) Ti > Ttot; at (i) initial state, (ii) 
60 s, (iii) 120 s, and (iv) 300 s. 
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(ii) 

(iii) 

P I ~ U R E  8. Deformation of a material blob for various geometries at the same f value. (a) 
W = 10.5 cm, H = 6.5 cm, V ,  = 1.90 cm/s, V ,  = - 1.90 cm/s, Ti = 20 a, f =  0.66; (a) one-side 
tilted, W=l l .Ocm,  H,=6 .5cm,  H 2 = 7 . 8 c m ,  Vt=1.90cm/s, Vb=-l.90cm/s,  Ti=2Os ,  
f = 0.66; at ( i )  initial state, ( i i )  60 s ,  (iii) 120 s, (iv) 320 s. Ttot/2Tt = 8. 

figure 11 b )  the boundaries of the forward and inverse striations must cross at  an angle 
19 of roughly 19" or more to ensure that all future striations will intersect at sufficient 
angle and to guarantee that all periodic points are hyperbolic. (The condition here 
is that the slope of vertical boundaries be greater than l/,u and the horizontal 
boundaries have slope less than p. For area preserving system ,u satisfies 1 < 2/,u2, 
Moser 1973). 
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As with Arefs system (Aref 1984), these conditions are met for lower and lower 
period as the flow strength in the cavity flow, which corresponds to the dimensionless 
frequency of oscillation f, is increased from zero. The system is more complicated 
than Arefs system in that the speed along streamlines for each half period is not 
constant. It can be shown that when structures analogous to those in the Arefs 
model are present in a region where the speed along streamlines is less than the mean 
speed of each, the conditions for horseshoe functions are met more stringently (Rising 
& Ottino 1986). For the particular cavity flow in figure 1O(c) we are thus expecting 
the horseshoe in the location shown for some value off and the experimental method 
is a verification of this. For systems in which such prior knowledge is unavailable, 
sufficiently refined experimental technique, tailored to the particular system in 
question, should be capable of proving the existence of the horseshoe by itself. We 
analyse below the photographs given here with this in mind as they suggest both 
methods and difficulties. 

Experimentally, the most difficult conditions to verify are that the forward top 
is the image of the inverse top or bottom (i.e. condition (ii)), and that the subsequent 
forward images lie inside (i.e. the first part of condition (iii)). In  systems other than 
alternating flows, construction of the quadrilateral and determination of period are 
also subject to the same difficulties and may require a fair amount of intuition or 
experiment to unravel. The major problem lies in placing the blobs directly on the 
horseshoe structure. If they do not coincide, the result is that individual striations 
may be either dye-filled, partially filled or empty. 

To verify condition (ii) the technique used was to conjecture the correspondence 
of pieces of the blob between many photographs and verify the conjecture by 
watching the experiment in motion. When the blob placement is not exact, two 
effects should be considered. The first is that the horseshoe structure takes several 
periods to be visible. This is because the dye must be drawn into the horseshoe before 
it begins to striate. The period at which the striations begin is then higher than the 
period of the horseshoe. If the horseshoe has n striations, it should have nk after k 
periods. The blob is incorrectly placed if it is inconsistent with mk, where m is the 
first period at which it striates. The second effect is that each striation is only 
partially filled so that the striations of dye will tend to violate condition (iii) by 
moving inward or outward on each transformation instead of overlapping properly. 
Consistent movement towards the centre or outside the horseshoe is the result. This 
can be overcome by keeping track of both filled and empty striations and combining 
them to foresee a reasonable picture. Comparison of the initial position of the dye 
with that of a conjectured horseshoe should confirm that this has been done properly. 
These problems are both present in figure 10 where the blob intersects the corner 
of the horseshoe instead of lying directly on top of it. Final verification of the 
horseshoe set is possible experimentally if the dye is placed as carefully as possible 
in the quadrilateral so that alternately all the striations will be filled, as shown in 
figure 12. For the cavity flow the period 1 horseshoe appears to form between f = 0.4 
and 0.6. It changes from horseshoe type (1, - 2) to type (1,2) to type (1,2,  - 3),  shown 
in figure 13, between f = 0.6 and 0.8 (this notation is developed by Rising & Ottino 
1986.) This is consistent with systems like the Arefs in which varying the flow 
strength causes innumerable horseshoes to form, collapse and coalesce into other 
horseshoe structures. Visual observation is very enlighting and provides the experi- 
mentalists with considerable insight into formation and change of the horseshoe 
functions present. Varying the geometry and period to give the best complete 
horseshoe function may or may not improve the mixing. The reasons for this are that 
improving the angle and stretch to improve the horseshoe may in some cases SO 
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FIGURE 9 (u,  b) .  For caption see facing page. 

drastically reduce the striation width that the mixing influences only a small part 
of the fluid. Also, although the (1 ,2)  horseshoe is qualitatively a better mixing device 
than the ( 1 ,  -2) horseshoe, its development may coincide with loss of good mixing 
in other parts of the cavity. 

The computation of the backward transformations from the forward transforma- 
tions brings us to an important point which appears in both experimental and 
computational aspects of the problem: can a picture such as figure 10(b) be 
unscrambled and restored to its initial configuration, figure 10 (a) ? Obviously in the 
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(ii) 

(iii) 

FIGURE 9. Deformation of a material blob placed at different initial locations. (a)  W = 11.0 cm, 
H,=6.5cm,H2=7.8cm,  V , =  l .Wcm/s, Vb=-l.QOcm/s,T~=20s,f=0.66;(b) W =  11.0cm, 
H = 7.0 cm, V,  = 1.3 cm/s, V ,  = -0.9 cm/s, Ti = 20 6, f =  0.4; (c) W = 11.0 cm, H = 7.0 cm, 
V,  = 1.3 cm/s, Vb = -0.9 cm/s, Ti = 20 s,f = 0.4; at (i) initial state, (ii) 60 8, (iii) 120 8, and (iv) 
300 8. TtOt/2T4 = 7.5. 

experimental case there is molecular diffusion which is of course irreversible. But 
neglecting this aspect, since the problem is deterministic, in principle it can be done. 
However, if the system is chaotic, e.g. contains horseshoe sets, the problem becomes 
sensitive to initial conditions (nearby trajectories diverge exponentially). Computa- 
tions are reversible only with infinite precision. With finite precision, a finite time 
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I. 

FIGURE 10. Detection of horseshoe functions. W = 10.5 cm, H = 6.5 cm, V, = 1.9 cm/s, 
V ,  = - 1.9 cm/s, Tk = 20 s, f = 0.66; at (a) initial state, (b)  160 a, (c) overlap of the forward and 
backward transformations, ( d )  enlargement of horseshoe function in (c). 
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FIGURE 11. (a) Properties (ii) and (iii) (see text). The images of tops and bottoms of the inverse 
striations must be tops and bottoms of forward striations. The successive forward striations must 
lie inside those of the previous transformation with a uniform decrease in area. P(S) is the forward 
transformation, P' (8) the backward transformation. (b) Quadrilateral S formed by the streamlines 
in alternate periodic cavity flow. A and B are hyperbolic points. 

T can always be found beyond which the initial condition is lost, and the problem 
cannot be restored. For numerical calculations, with N-bit precision, the initial 
condition is lost after 0(2N) transformations in regular systems and O ( N )  in chaotic 
systems. Loosely speaking, an integrable or regular system is computationally 
reversible but a chaotic one is not. A computational example in the context of mixing 
is given by Khakhar, Chella t Ottino (1984). The same point was raised by Aref 
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FIGURE 12. Same as figure 10 but changing the location of the blob. 
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FIQURE 13. (a) Schematic of 8, F(S) ,  and F-'(S) for a (1 ,  -2) horseshoe. ( b )  Schematic of S ,  F(S),  
and F-l (8) for a (1,2) horseshoe. (c) Schematic of S,  F(S), and F-l (8) for a (1 ,  2,-3) horseshoe. 
F(S)  is the forward transformation, F-'(S) the backward transformation. 

(1984). Experimentally one can unscramble - within experimental error - figures 
6a(iv), 6b(iv) and 6c(iv), but it is much harder to reverse 64iv).  Thus the issue of 
kinematical reversibility of creeping flows should be treated with caution. 

6. Conclusions 
The alternate (periodic) cavity flow was found to be much more efficient than 

steady flows (Types I, I1 and 111, figure 1).  This is not surprising since all steady 
two-dimensional flows are integrable and hence have zero Liapunov exponents and 
consequently time-decaying efficiencies. On the other hand, the alternate (periodic) 
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cavity flow can produce horseshoe functions and hence chaos. However, we are 
unable to predict the region of global chaos and can not generate good overall mixing. 

For low Reynolds numbers, the dimensionless frequency of oscillation f seems to 
be the most important parameter to compare among various flows. It seems clear 
that there exists an optimal value off that is able to produce the maximum stretching 
in a given time (iff+O the flow becomes integrable and the size of the chaotic region 
should go to zero; if Ti > Ttot the flow is again integrable). In  some model flows it 
is possible to compute this value. For long mixing times there seems to be an optimal 
value off that produces the maximum stretching with the minimum expenditure of 
energy (Khakhar, Rising & Ottino 1985). For flows such as the cavity flow, we are 
not able to predict the optimal value off. 

All other things being equal, the geometry of the flow region seems to be an 
important factor in deciding the final results of mixing; mixing of blobs provides 
most information. For example, we found that the alternate (periodic) cavity flow 
becomes less efficient when one of the boundaries is tilted. This effect is noticeable 
even for ‘optimal’ values off. The initial location does not seem to be critical when 
the system operates at an optimal value off. 

There are currently many difficulties with a theoretical treatment of optimizing 
the mixing conditions caused by horseshoes. However, the possibility of locating 
them experimentally provides new information on mixing properties, and thus new 
input for theoretical treatment. Since horseshoe functions can be located experi- 
mentally, this method allows the qualitative treatment of mixing of more complex 
flows than can usually be understood analytically through the equations of motion. 
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